Первая вычислительная техника. Вычислительная машина

Во все времена, начиная с древности, людям необходимо было считать. Сначала для счета использовали пальцы собственных рук или камешки. Однако даже простые арифметические операции с большими числами трудны для мозга человека. Поэтому уже в древности был придуман простейший инструмент для счета – абак, изобретенный более 15 веков назад в странах Средиземноморья. Этот прообраз современных счетов представлял собой набор костяшек, нанизанных на стержни, и использовался купцами.

Стержни абака в арифметическом смысле представляют собой десятичные разряды. Каждая костяшка на первом стержне имеет достоинство 1, на втором стержне – 10, на третьем стержне – 100 и т.д. До XVII века счеты оставались практически единственным счетным инструментом.

В России так называемые русские счеты появились в XVI веке. Они основаны на десятичной системе счисления и позволяют быстро выполнять арифметические действия (рис. 6)

Рис. 6. Счеты

В 1614 году математик Джон Непер изобрел логарифмы.

Логарифм – это показатель степени, в которую нужно возвести число (основание логарифма), чтобы получить другое заданное число. Открытие Непера состояло в том, что таким способом можно выразить любое число, и что сумма логарифмов двух любых чисел равна логарифму произведения этих чисел. Это дало возможность свести действие умножения к более простому действию сложения. Непер создал таблицы логарифмов. Для того, чтобы перемножить два числа, нужно посмотреть в этой таблице их логарифмы, сложить их и отыскать число, соответствующее этой сумме, в обратной таблице – антилогарифмов. На основе этих таблиц в 1654 году Р. Биссакар и в 1657 году независимо от него С. Партридж разработали прямоугольную логарифмическую линейку: основной счетный прибор инженера до середины XX века (рис. 7).

Рис. 7. Логарифмическая линейка

В 1642 году Блэз Паскаль изобрел механическую суммирующую машину, использующую десятичную систему счисления. Каждый десятичный разряд представляло колесико с десятью зубцами, обозначавшими цифры от 0 до 9. Всего колесиков было 8, то есть машина Паскаля была 8-разрядной.

Однако победила в цифровой вычислительной технике не десятичная, а двоичная система счисления. Главная причина этого в том, что в природе встречается множество явлений с двумя устойчивыми состояниями, например, «включено/выключено», «есть напряжение / нет напряжения», «ложное высказывание / истинное высказывание», а явления с десятью устойчивыми состояниями – отсутствуют. Почему же десятичная система так широко распространена? Да просто потому, что у человека на двух руках – десять пальцев, и их удобно использовать для простого устного счета. Но в электронной вычислительной технике гораздо проще применять двоичную систему счисления всего с двумя устойчивыми состояниями элементов и простейшими таблицами сложения и умножения. В современных цифровых вычислительных машинах – компьютерах – двоичная система используется не только для записи чисел, над которыми нужно производить вычислительные операции, но и для записи самих команд этих вычислений и даже целых программ операций. При этом все вычисления и операции сводятся в компьютере к простейшим арифметическим действиям над двоичными числами.



Одним из первых проявил интерес к двоичной системе великий немецкий математик Готфрид Лейбниц. В 1666 году в двадцатилетнем возрасте, в работе «Об искусстве комбинаторики» он разработал общий метод, позволяющий свести любую мысль к точным формальным высказываниям. Это открыло возможность перевести логику (Лейбниц называл ее законами мышления) из царства слов в царство математики, где отношения между объектами и высказываниями определяются точно и определенно. Таким образом, Лейбниц явился основателем формальной логики. Он занимался исследованием двоичной системы счисления. При этом Лейбниц наделял ее неким мистическим смыслом: цифру 1 он ассоциировал с Богом, а 0 – с пустотой. От этих двух цифр, по его мнению, произошло все. И с помощью этих двух цифр можно выразить любое математическое понятие. Лейбниц первым высказал мысль, что двоичная система может стать универсальным логическим языком.

Лейбниц мечтал о построении «универсальной науки». Он хотел выделить простейшие понятия, с помощью которых по определенным правилам можно сформулировать понятия любой сложности. Мечтал о создании универсального языка, на котором можно было бы записывать любые мысли в виде математических формул. Думал о машине, которая могла бы выводить теоремы из аксиом, о превращении логических утверждений в арифметические. В 1673 году создал новый тип арифмометра – механический калькулятор, который не только складывает и вычитает числа, но и умножает, делит, возводит в степень, извлекает квадратные и кубические корни. В нем использовалась двоичная система счисления.

Универсальный логический язык создал в 1847 году английский математик Джордж Буль. Он разработал исчисление высказываний, впоследствии названное в его честь булевой алгеброй. Она представляет собой формальную логику, переведенную на строгий язык математики. Формулы булевой алгебры внешне похожи на формулы той алгебры, что знакома нам со школьной скамьи. Однако это сходство не только внешнее, но и внутреннее. Булева алгебра – это вполне равноправная алгебра, подчиняющаяся своду принятых при ее создании законов и правил. Она является системой обозначений, применимой к любым объектам – числам, буквам и предложениям. Пользуясь этой системой, можно закодировать любые утверждения, истинность или ложность которых нужно доказать, а затем манипулировать ими подобно обычным числам в математике.

Буль Джордж (1815–1864) – английский математик и логик, один из основоположников математической логики. Разработал алгебру логики (в трудах «Математический анализ логики» (1847) и «Исследование законов мышления» (1854)).

Огромную роль в распространении булевой алгебры и ее развитии сыграл американский математик Чарльз Пирс.

Пирс Чарльз (1839–1914) – американский философ, логик, математик и естествоиспытатель, известен своими работами по математической логике.

Предмет рассмотрения в алгебре логики – так называемые высказывания, т.е. любые утверждения, о которых можно сказать, что они либо истинны, либо ложны: «Омск – город в России», «15 – четное число». Первое высказывание истинно, второе – ложно.

Сложные высказывания, получаемые из простых с помощью союзов И, ИЛИ, ЕСЛИ...ТО, отрицания НЕ, также могут быть истинными или ложными. Их истинность зависит только от истинности или ложности образующих их простых высказываний, например: «Если на улице нет дождя, то можно пойти гулять». Основная задача булевой алгебры состоит в изучении этой зависимости. Рассматриваются логические операции, позволяющие строить сложные высказывания из простых: отрицание (НЕ), конъюнкция (И), дизъюнкция (ИЛИ) и другие.

В 1804 году Ж. Жаккар изобрел ткацкую машину для выработки тканей с крупным узором. Этот узор программировался с помощью целой колоды перфокарт – прямоугольных карточек из картона. На них информация об узоре записывалась пробивкой отверстий (перфораций), расположенных в определенном порядке. При работе машины эти перфокарты ощупывались с помощью специальных штырей. Именно таким механическим способом с них считывалась информация для плетения запрограммированного узора ткани. Машина Жаккара явилась прообразом машин с программным управлением, созданных в ХХ веке.

В 1820 году Тома де Кольмар разработал первый коммерческий арифмометр, способный умножать и делить. Начиная с XIX века, арифмометры получили широкое распространение при выполнении сложных расчетов.

В 1830 году Чарльз Бэббидж попытался создать универсальную аналитическую машину, которая должна была выполнять вычисления без участия человека. Для этого в нее вводились программы, которые были заранее записаны на перфокартах из плотной бумаги с помощью отверстий, сделанных на них в определенном порядке (слово «перфорация» означает «пробивка отверстий в бумаге или картоне»). Принципы программирования для аналитической машины Бэббиджа разработала в 1843 году Ада Лавлейс – дочь поэта Байрона.


Рис. 8. Чарльз Бэббидж


Рис. 9. Ада Лавлейс

Аналитическая машина должна уметь запоминать данные и промежуточные результаты вычислений, то есть иметь память. Эта машина должна была содержать три основных части: устройство для хранения чисел, набиравшихся с помощью зубчатых колес (память), устройство для операций над числами (арифметическое устройство) и устройство для операций над числами с помощью перфокарт (устройство программного управления). Работа по созданию аналитической машины не была завершена, но заложенные в ней идеи помогли построить в XX веке первые компьютеры (в переводе с английского это слово означает «вычислитель»).

В 1880 году В.Т. Однер в России создал механический арифмометр с зубчатыми колесами, и в 1890 году наладил его массовый выпуск. В дальнейшем под названием «Феликс» он выпускался до 50-х годов XX века (рис. 11).


Рис. 10. В.Т. Однер


Рис. 11. Механический арифмометр «Феликс»

В 1888 году Герман Холлерит (рис. 12) создал первую электромеханическую счетную машину – табулятор, в котором нанесенная на перфокарты (рис. 13) информация расшифровывалась электрическим током. Эта машина позволила в несколько раз сократить время подсчетов при переписи населения в США. В 1890 г. изобретение Холлерита было впервые использовано в 11-й американской переписи населения. Работа, которую 500 сотрудников раньше выполняли целых 7 лет, Холлерит с 43 помощниками на 43 табуляторах закончили за один месяц.

В 1896 году Холлерит основал фирму под названием Tabulating Machine Co. В 1911 году эта компания была объединена с двумя другими фирмами, специализировавшимися на автоматизации обработки статистических данных, а свое современное название IBM (International Business Machines) получила в 1924 г. Она стала электронной корпорацией, одним из крупнейших мировых производителей всех видов компьютеров и программного обеспечения, провайдером глобальных информационных сетей. Основателем IBM стал Томас Уотсон Старший, возглавивший компанию в 1914 году, фактически создавший корпорацию IBM и руководивший ею более 40 лет. С середины 1950-х годов Ай-Би-Эм заняла ведущее положение на мировом компьютерном рынке. В 1981 году компания создала свой первый персональный компьютер, который стал стандартом в своей отрасли. К середине 1980-х годов IBM контролировала около 60% мирового производства электронно-вычислительных машин.


Рис. 12. Томас Уотсон старший

Рис. 13. Герман Холлерит

В конце XIX века была изобретена перфолента – бумажная или целлулоидная пленка, на которую информация наносилась перфоратором в виде совокупности отверстий.

Широкая бумажная перфолента была применена в монотипе – наборной машине, изобретенной Т. Ланстоном в 1892 году. Монотип состоял из двух самостоятельных аппаратов: клавиатуры и отливного аппарата. Клавиатура служила для составления программы набора на перфоленте, а отливной аппарат изготавливал набор в соответствии с ранее составленной на клавиатуре программой из специального типографского сплава – гарта.

Рис. 14. Перфокарта

Рис. 15. Перфоленты

Наборщик садился за клавиатурный аппарат, смотрел в стоящий перед ним на пюпитре текст и нажимал на соответствующие клавиши. При ударе по одной из буквенных клавиш иглы перфорирующего механизма с помощью сжатого воздуха пробивали в бумажной ленте кодовую комбинацию из отверстий. Эта комбинация соответствовала данной букве, знаку или пробелу между ними. После каждого удара по клавише бумажная лента передвигалась на один шаг – 3 мм. Каждый горизонтальный ряд отверстий на перфоленте соответствует одной букве, знаку или пробелу между ними. Готовую (пробитую) катушку перфоленты переносили в отливной аппарат, в котором также с помощью сжатого воздуха с перфоленты считывалась закодированная на ней информация и автоматически изготавливался набор из литер. Таким образом, монотип является одной из первых в истории техники машин с программным управлением. Он относился к машинам горячего набора и со временем уступил свое место сначала фотонабору, а затем электронному набору.

Несколько ранее монотипа, в 1881 году, была изобретена пианола (или фонола) – инструмент для автоматической игры на фортепиано. Действовала она также с помощью сжатого воздуха. В пианоле каждой клавише обыкновенного пианино или рояля соответствует молоточек, ударяющий но ней. Все молоточки вместе составляют контрклавиатуру, приставляемую к клавиатуре пианино. В пианолу вставляется широкая бумажная перфолента, намотанная на валик. Отверстия на перфоленте проделаны заранее во время игры пианиста – это своеобразные «ноты». При работе пианолы перфолента перематывается с одного валика на другой. Считывание записанной на ней информации производится с помощью пневматического механизма. Он приводит в действие молоточки, соответствующие отверстиям на перфоленте, заставляет их ударять по клавишам и воспроизводить игру пианиста. Таким образом, пианола также являлась машиной с программным управлением. Благодаря сохранившимся перфолентам пианол удалось восстановить и заново записать современными методами игру таких замечательных пианистов прошлого, как композитор А.Н. Скрябин. Пианолой пользовались известные композиторы и пианисты Рубинштейн, Падеревский, Бузони.

Позднее было применено считывание информации с перфоленты и перфокарт с помощью электрических контактов – металлических щеточек, которые при попадании на отверстие замыкали электрическую цепь. Затем щеточки заменили на фотоэлементы, и считывание информации стало оптическим, бесконтактным. Так записывалась и считывалась информация в первых цифровых вычислительных машинах.

Логические операции тесно связаны с повседневной жизнью.

С помощью одного элемента ИЛИ на два входа, двух элементов И на два входа и одного элемента НЕ можно построить логическую схему двоичного полусумматора, способного осуществлять операцию двоичного сложения двух одноразрядных двоичных чисел (т.е. выполнять правила двоичной арифметики):

0 +0 =0; 0+1=1; 1+0=1; 1+1=0. При этом он выделяет бит переноса.

Однако такая схема не содержит третьего входа, на который можно подавать сигнал переноса от предыдущего разряда суммы двоичных чисел. Поэтому полусумматор используется только в младшем разряде логической схемы суммирования многоразрядных двоичных чисел, где не может быть сигнала переноса от предыдущего двоичного разряда. Полный двоичный сумматор складывает два многоразрядных двоичных числа с учетом сигналов переноса от сложения в предыдущих двоичных разрядах.

Соединяя двоичные сумматоры в каскад, можно получить логическую схему сумматора для двоичных чисел с любым числом разрядов.

С некоторыми изменениями эти логические схемы применяются и для вычитания, умножения и деления двоичных чисел. С их помощью построены арифметические устройства современных компьютеров.

В 1937 году Джордж Стибиц (рис.16) создал из обыкновенных электромеханических реле двоичный сумматор – устройство, способное выполнять операцию сложения чисел в двоичном коде. И сегодня двоичный сумматор по–прежнему является одним из основных компонентов любого компьютера, основой его арифметического устройства.


Рис. 16. Джордж Стибиц

В 1937–1942 гг. Джон Атанасофф (рис. 17) создал модель первой вычислительной машины, работавшей на вакуумных электронных лампах. В ней использовалась двоичная система счисления. Для ввода данных и вывода результатов вычислений использовались перфокарты. Работа над этой машиной в 1942 году была практически завершена, но из-за войны дальнейшее финансирование было прекращено.


Рис. 17. Джон Атанасофф

В 1937 году Конрад Цузе (рис.12) создал свою первую вычислительную машину Z1 на основе электромеханических реле. Исходные данные вводились в нее с помощью клавиатуры, а результат вычислений высвечивался на панели с множеством электрических лампочек. В 1938 году К. Цузе создал усовершенствованную модель Z2. Программы в нее вводились с помощью перфоленты. Ее изготавливали, пробивая отверстия в использованной 35-миллиметровой фотопленке. В 1941 году К. Цузе построил действующий компьютер Z3, а позднее и Z4, основанные на двоичной системе счисления. Они использовались для расчетов при создании самолетов и ракет. В 1942 году Конрад Цузе и Хельмут Шрайер задумали перевести Z3 с электромеханических реле на вакуумные электронные лампы. Такая машина должна была работать в 1000 раз быстрее, но создать ее не удалось – помешала война.


Рис. 18. Конрад Цузе

В 1943–1944 годах на одном из предприятий Ай-Би-Эм (IBM) в сотрудничестве с учеными Гарвардского университета во главе с Говардом Эйкеном была создана вычислительная машина «Марк-1». Весила она около 35 тонн. «Марк-1» был основан на применении электромеханических реле и оперировал числами, закодированными на перфоленте.

При ее создании использовались идеи, заложенные Ч. Бэббиджем в его аналитической машине. В отличие от Стибица и Цузе, Эйкен не осознал преимуществ двоичной системы счисления и в своей машине использовал десятичную систему. Машина могла манипулировать числами длиной до 23 разрядов. Для перемножения двух таких чисел ей было необходимо затратить 4 секунды. В 1947 году была создана машина «Марк-2», в которой уже использовалась двоичная система счисления. В этой машине операции сложения и вычитания занимали в среднем 0,125 секунды, а умножение – 0,25 секунды.

Абстрактная наука алгебра логики близка к практической жизни. Она позволяет решать самые разные задачи управления.

Входные и выходные сигналы электромагнитных реле, подобно высказываниям в булевой алгебре, также принимают только два значения. Когда обмотка обесточена, входной сигнал равен 0, а если по обмотке протекает ток, входной сигнал равен 1. Когда контакт реле разомкнут, выходной сигнал равен 0, а если контакт замкнут – равен 1.

Именно это сходство между высказываниями в булевой алгебре и поведением электромагнитных реле заметил известный физик Пауль Эренфест. Еще в 1910 году он предложил использовать булеву алгебру для описания работы релейных схем в телефонных системах. По другой версии, идея использования булевой алгебры для описания электрических переключательных схем принадлежит Пирсу. В 1936 году основатель современной теории информации Клод Шеннон в своей докторской диссертации объединил двоичную систему счисления, математическую логику и электрические цепи.

Связи между электромагнитными реле в схемах удобно обозначать с помощью логических операций НЕ, И, ИЛИ, ПОВТОРЕНИЕ (ДА) и т.д. Например, последовательное соединение контактов реле реализует операцию И, а параллельное соединение этих контактов – логическую операцию ИЛИ. Аналогично выполняются операции И, ИЛИ, НЕ в электронных схемах, где роль реле, замыкающих и размыкающих электрические цепи, выполняют бесконтактные полупроводниковые элементы – транзисторы, созданные в 1947–1948 годах американскими учеными Д. Бардиным, У. Браттейном и У. Шокли.

Электромеханические реле работали слишком медленно. Поэтому уже в 1943 году американцы начали разработку вычислительной машины на основе электронных ламп. В 1946 году Преспер Эккерт и Джон Мочли (рис. 13) построили первую электронную цифровую вычислительную машину ENIAC. Ее вес составлял 30 тонн, она занимала 170 кв. м площади. Вместо тысяч электромеханических реле ENIAC содержал 18000 электронных ламп. Считала машина в двоичной системе и производила 5000 операций сложения или 300 операций умножения в секунду. На электронных лампах в этой машине было построено не только арифметическое, но и запоминающее устройство. Ввод числовых данных осуществлялся с помощью перфокарт, программы же вводились в эту машину с помощью штекеров и наборных полей, то есть приходилось соединять для каждой новой программы тысячи контактов. Поэтому для подготовки к решению новой задачи требовалось до нескольких дней, хотя сама задача решалась за несколько минут. Это было одним из основных недостатков такой машины.


Рис. 19. Преспер Эккерт и Джон Мочли

Работы трех выдающихся ученых – Клода Шеннона, Алана Тьюринга и Джона фон Неймана – стали основой для создания структуры современных компьютеров.

Шеннон Клод (1916 г.р.) – американский инженер и математик, основоположник математической теории информации.

В 1948 году опубликовал работу «Математическая теория связи», со свой теорией передачи и обработки информации, которая включала все виды сообщений, в том числе передаваемых по нервным волокнам в живых организмах. Шеннон ввел понятие количества информации как меры неопределенности состояния системы, снимаемой при получении информации. Он назвал эту меру неопределенности энтропией по аналогии с подобным понятием в статистической механике. При получении наблюдателем информации энтропия, то есть степень его неосведомленности о состоянии системы, уменьшается.

Тьюринг Алан (1912–1954) – английский математик. Основные труды – по математической логике и вычислительной математике. В 1936–1937 гг. написал основополагающую работу «О вычислимых числах», в которой ввел понятие абстрактного устройства, названного впоследствии «машиной Тьюринга». В этом устройстве он предвосхитил основные свойства современного компьютера. Тьюринг назвал свое устройство «универсальной машиной», так как она должна была решать любую допустимую (теоретически разрешимую) математическую или логическую задачу. Данные в нее нужно вводить с бумажной ленты, поделенной на ячейки – клетки. В каждой такой клетке должен был либо содержаться символ, либо нет. Машина Тьюринга могла обрабатывать вводимые с ленты символы и изменять их, то есть стирать их и записывать новые по инструкциям, хранимым в ее внутренней памяти.

Нейман Джон фон (1903–1957) – американский математик и физик, участник работ по созданию атомного и водородного оружия. Родился в Будапеште, с 1930 года проживал в США. В своем докладе, опубликованном в 1945 году и ставшем первой работой по цифровым электронным компьютерам, выделил и описал «архитектуру» современного компьютера.

В следующей машине – EDVAC – ее более вместительная внутренняя память способна была хранить не только исходные данные, но и программу вычислений. Эту идею – хранить в памяти машины программы – наряду с Мочли и Эккертом выдвинул математик Джон фон Нейман. Он впервые описал структуру универсального компьютера (так называемую «архитектуру фон Неймана» современного компьютера). Для универсальности и эффективной работы, по мнению фон Неймана, компьютер должен содержать центральное арифметико-логическое устройство, центральное устройство управления всеми операциями, запоминающее устройство (память) и устройство ввода/вывода информации, а программы следует хранить в памяти компьютера.

Фон Нейман считал, что компьютер должен работать на основе двоичной системы счисления, быть электронным и выполнять все операции последовательно, одну за другой. Эти принципы заложены в основу всех современных компьютеров.

Машина на электронных лампах работала значительно быстрее, чем на электромеханических реле, но сами электронные лампы были ненадежны. Они часто выходили из строя. Для их замены в 1947 году Джон Бардин, Уолтер Браттейн и Уильям Шокли предложили использовать изобретенные ими переключающие полупроводниковые элементы – транзисторы.

Бардин Джон (1908–1991) – американский физик. Один из создателей первого транзистора (Нобелевская премия 1956 г. по физике совместно с У. Браттейном и У. Шокли за открытие транзисторного эффекта). Один из авторов микроскопической теории сверхпроводимости (вторая Нобелевская премия 1957 г. совместно с Л. Купером и Д. Шриффеном).

Браттейн Уолтер (1902–1987) – американский физик, один из создателей первого транзистора, лауреат Нобелевской премии по физике 1956 года.

Шокли Уильям (1910–1989) – американский физик, один из создателей первого транзистора, лауреат Нобелевской премии по физике 1956 года.

В современных компьютерах микроскопические транзисторы в кристалле интегральной схемы сгруппированы в системы «вентилей», выполняющих логические операции над двоичными числами. Так, например, с их помощью построены описанные выше двоичные сумматоры, позволяющие складывать многоразрядные двоичные числа, производить вычитание, умножение, деление и сравнение чисел между собой. Логические «вентили», действуя по определенным правилам, управляют движением данных и выполнением инструкций в компьютере.

Совершенствование первых образцов вычислительных машин привело в 1951 году к созданию компьютера UNIVAC, предназначенного для коммерческого использования. Он стал первым серийно выпускаемым компьютером.

Серийный ламповый компьютер IBM 701, появившийся в 1952 году, выполнял до 2200 операций умножения в секунду.


Компьютер IBM 701

Инициатива создания этой системы принадлежала Томасу Уотсону–младшему. В 1937 году он начал работать в компании в качестве коммивояжера. Он прерывал свою работу в IBM лишь во время войны, когда был летчиком военно-воздушных сил Соединенных Штатов. Вернувшись на работу в компанию в 1946–м, он стал ее вице-президентом и возглавлял компанию IBM с 1956 до 1971 года. Оставаясь членом совета директоров IBM, Томас Уотсон с 1979 по 1981 год являлся послом Соединенных Штатов в СССР.


Томас Уотсон (младший)

В 1964 году фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения. Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью. При создании моделей семейства использовался ряд новых принципов, что делало машины универсальными и позволяло с одинаковой эффективностью применять их как для решения задач в различных областях науки и техники, так и для обработки данных в сфере управления и бизнеса. IBM System/360 (S/360) – это семейство универсальных компьютеров класса мейнфреймов. Дальнейшим развитием IBM/360 стали системы 370, 390, z9 и zSeries. В СССР IBM/360 была клонирована под названием ЕС ЭВМ. Они были программно совместимы со своими американскими прообразами. Это давало возможность использовать западное программное обеспечение в условиях неразвитости отечественной «индустрии программирования».


Компьютер IBM/360


Т. Уотсон (младший) и В. Лерсон у компьютера IBM/360

Первая в СССР Малая Электронная Счетная машина (МЭСМ) на электронных лампах была построена в 1949–1951 гг. под руководством академика С.А. Лебедева. Независимо от зарубежных учёных С.А. Лебедев разработал принципы построения ЭВМ с хранимой в памяти программой. МЭСМ была первой такой машиной. А в 1952–1954 гг. под его руководством была разработана Быстродействующая Электронная Счетная машина (БЭСМ), выполнявшая 8000 операций в секунду.


Лебедев Сергей Алексеевич

Созданием электронных вычислительных машин руководили крупнейшие советские ученые и инженеры И.С. Брук, В.М. Глушков, Ю.А. Базилевский, Б.И. Рамеев, Л.И. Гутенмахер, Н.П. Брусенцов.

К первому поколению советских компьютеров относятся ламповые ЭВМ – «БЭСМ-2», «Стрела», «М-2», «М-3», «Минск», «Урал-1», «Урал-2», «М-20».

Ко второму поколению советских компьютеров относятся полупроводниковые малые ЭВМ «Наири» и «Мир», средние ЭВМ для научных расчетов и обработки информации со скоростью 5–30 тысяч операций в секунду «Минск-2», «Минск-22», «Минск-32», «Урал-14», «Раздан-2», «Раздан-3», «БЭСМ-4», «М-220» и управляющие ЭВМ «Днепр», «ВНИИЭМ-3», а также сверхбыстродействующая БЭСМ-6 с производительностью 1 млн. операций в секунду.

Родоначальниками советской микроэлектроники были ученые, эмигрировавшие из США в СССР: Ф.Г. Старос (Альфред Сарант) и И.В. Берг (Джоэл Барр). Они стали инициаторами, организаторами и руководителями центра микроэлектроники в Зеленограде под Москвой.


Ф.Г. Старос

Компьютеры третьего поколения на интегральных микросхемах появились в СССР во второй половине 1960–х годов. Были разработаны Единая Система ЭВМ (ЕС ЭВМ) и Система Малых ЭВМ (СМ ЭВМ) и организовано их серийное производство. Как уже указывалось выше, эта система представляла собой клон американской системы IBM/360.

Евгений Алексеевич Лебедев был ярым противником начавшегося в 1970-е годы копирования американской системы IBM/360, которая в советском варианте носила название ЕС ЭВМ. Роль ЕС ЭВМ в развитии отечественных компьютеров неоднозначна.

На начальном этапе появление ЕС ЭВМ привело к унификации компьютерных систем, позволило установить начальные стандарты программирования и организовывать широкомасштабные проекты, связанные с внедрением программ.

Ценой этого было повсеместное свёртывание собственных оригинальных разработок и попадание в полную зависимость от идей и концепций фирмы IBM, далеко не самых лучших по тому времени. Резкий переход от простых в эксплуатации советских машин к намного более сложным аппаратным и программным средствам IBM/360 привёл к тому, что многие программисты должны были преодолевать трудности, связанные с недоделками и ошибками IBM-ских разработчиков. Начальные модели ЕС ЭВМ по эксплуатационным характеристикам нередко уступали отечественным компьютерам того времени.

На позднем этапе, особенно в 80-е, повсеместное внедрение ЕС ЭВМ превратилось в серьёзный тормоз для развития программного обеспечения, баз данных, диалоговых систем. После дорогостоящих и заранее спланированных закупок предприятия были вынуждены эксплуатировать морально устаревшие компьютерные системы. Параллельно развивались системы на малых машинах и на персональных компьютерах, которые становились всё более и более популярны.

На позднейшем этапе, с началом перестройки, с 1988–89 годов, нашу страну наводнили зарубежные персональные компьютеры. Никакие меры уже не могли остановить кризис серии ЕС ЭВМ. Отечественная промышленность не смогла создать аналогов или заменителей ЕС ЭВМ на новой элементной базе. Экономика СССР не позволила к тому времени затратить гигантские финансовые средства для создания микроэлектронной техники. В итоге произошёл полный переход на импортные компьютеры. Были окончательно свёрнуты программы по разработке отечественных компьютеров. Возникли проблемы переноса технологий на современные компьютеры, модернизации технологий, трудоустройства и переквалификации сотен тысяч специалистов.

Прогноз С.А. Лебедева оправдался. И в США, и во всем мире в дальнейшем пошли по пути, который он предлагал: с одной стороны, создаются суперкомпьютеры, а с другой – целый ряд менее мощных, ориентированных на различные применения компьютеров – персональных, специализированных и др.

Четвертое поколение советских компьютеров реализовано на основе больших (БИС) и сверхбольших (СБИС) интегральных микросхем.

Примером крупных вычислительных систем четвертого поколения стал многопроцессорный комплекс «Эльбрус-2» с быстродействием до 100 млн. операций в секунду.

В 1950-х годах было создано второе поколение компьютеров, выполненных на транзисторах. В результате быстродействие машин возросло в 10 раз, а размеры и вес значительно уменьшились. Стали применять запоминающие устройства на магнитных ферритовых сердечниках, способные хранить информацию неограниченное время даже при отключении компьютеров. Их разработал Джой Форрестер в 1951–1953 годах. Большие объемы информации хранились на внешнем носителе, например на магнитной ленте или на магнитном барабане.

Первый в истории вычислительной техники накопитель на жестких магнитных дисках (винчестер – winchester) разработала в 1956 году группа инженеров IBM под руководством Рейнольда Б. Джонсона. Устройство носило название 305 RAMAC – контрольно-считывающее устройство по методу случайного доступа (Random Access Method of Accounting and Control). Накопитель состоял из 50 алюминиевых дисков диаметром 24 дюйма (около 60 см) при толщине 2,5 см каждый. На поверхность алюминиевой пластины наносился магнитный слой, на который и осуществлялась запись. Вся эта конструкция из дисков на общей оси в рабочем режиме вращалась с постоянной скоростью 1200 об/мин, а сам накопитель занимал площадку размерами 3х3,5 м. Суммарная емкость его составляла 5 Мb. Одним из важнейших принципов, использованных в конструкции RAMAC 305, явилось то, что головки не прикасались к поверхности дисков, а зависали на малом фиксированном расстоянии. Для этого использовались специальные воздушные сопла, которые направляли поток к диску через маленькие отверстия в держателях головок и тем самым создавали зазор между головкой и поверхностью вращающейся пластины.

Винчестер (жесткий диск) обеспечил компьютерных пользователей возможностью хранить очень большие объемы информации и при этом быстро извлекать нужные данные. После создания винчестера в 1958 году от носителей на магнитных лентах отказались.

В 1959 году Д. Килби, Д. Херни, К. Леховец и Р. Нойс (рис. 14) изобрели интегральные микросхемы (чипы), в которых все электронные компоненты вместе с проводниками помещались внутри кремниевой пластинки. Применение чипов в компьютерах позволило сократить пути прохождения тока при переключениях. Скорость вычислений при этом увеличилась в десятки раз. Существенно уменьшились и габариты машин. Появление чипа позволило создать третье поколение компьютеров. И в 1964 году фирма IBM начинает выпуск компьютеров IBM-360 на интегральных микросхемах.


Рис. 14. Д. Килби, Д. Херни, К. Леховец и Р. Нойс

В 1965 году Дуглас Энгелбарт (рис.15) создал первую «мышь» – компьютерный ручной манипулятор. Впервые она была применена в персональном компьютере Apple фирмы Macintosh, выпущенном позднее, в 1976 году.


Рис. 19. Дуглас Энгелбарт

В 1971 году компания IBM начала производить дискету для компьютера, изобретенную Йосиро Накамацу – съемный гибкий магнитный диск («флоппи–диск») для постоянного хранения информации. Первоначально дискета была гибкой, имела диаметр 8 дюймов и емкость 80 Кбайт, затем – 5 дюймов. Современная дискета емкостью 1,44 Мбайта, впервые выпущенная фирмой Sony в 1982 году, заключена в жесткий пластмассовый корпус и имеет диаметр 3,5 дюйма.

В 1969 году в США началось создание оборонной компьютерной сети – прародителя современной всемирной сети Internet.

В 1970-е годы были разработаны матричные принтеры, предназначенные для распечатки информации на выходе из компьютеров.

В 1971 году сотрудник компании Intel Эдвард Хофф (рис. 20) создал первый микропроцессор 4004, разместив несколько интегральных микросхем на одном кремниевом кристалле. Хотя первоначально он предназначался для использования в калькуляторах, по существу он представлял собой законченный микрокомпьютер. Это революционное изобретение кардинально перевернуло представление о компьютерах как о громоздких, тяжеловесных монстрах. Микропроцессор дал возможность создать компьютеры четвертого поколения, которые помещались на письменном столе пользователя.


Рис. 20. Эдвард Хофф

В середине 1970-х годов начинают предприниматься попытки создания персонального компьютера (ПК) – вычислительной машины, предназначенной для частного пользователя.

В 1974 году Эдвард Робертс (рис. 21) создал первый персональный компьютер «Altair» на основе микропроцессора 8080 фирмы «Intel» (рис.22). Но без программного обеспечения он был неработоспособен: ведь дома у частного пользователя нет «под рукой» своего программиста.


Рис. 21. Эдвард Робертс


Рис. 22. Первый персональный компьютер Altair

В 1975 году о создании ПК Altair узнали два студента Гарвардского университета Билл Гейтс и Пол Аллен (рис. 23). Они первыми поняли насущную необходимость написания программного обеспечения для персональных компьютеров и в течение месяца создали его для ПК «Altair» на основе языка Бейсик. В том же году они основали компанию Microsoft, быстро завоевавшую лидерство в создании программного обеспечения для персональных компьютеров и ставшую богатейшей компанией во всем мире.


Рис. 23. Билл Гейтс и Пол Аллен


Рис. 24. Билл Гейтс

В 1973 году фирмой IBM был разработан жесткий магнитный диск (винчестер) для компьютера. Это изобретение дало возможность создать долговременную память большого объема, которая сохраняется при выключении компьютера.

Первые микрокомпьютеры Altair-8800 представляли собой только набор деталей, которые нужно было еще собирать. Кроме того, пользоваться ими было крайне неудобно: они не имели ни монитора, ни клавиатуры, ни мыши. Ввод информации в них осуществлялся с помощью переключателей на передней панели, а результаты отображались с помощью светодиодных индикаторов. Позднее стали выводить результаты с помощью телетайпа – телеграфного аппарата с клавиатурой.

В 1976 году 26-летний инженер Стив Возняк из компании Hewlett-Packard создал принципиально новый микрокомпьютер. Он впервые применил для ввода данных клавиатуру, подобную клавиатуре пишущей машинки, а для отображения информации – обыкновенный телевизор. Символы выводились на его экран в 24 строки по 40 символов в каждой. Компьютер имел 8 Кбайт памяти, половину из которых занимал встроенный язык Бейсик, а половину пользователь мог использовать для введения своих программ. Этот компьютер значительно превосходил Altair-8800, имевший всего 256 байтов памяти. С. Возняк предусмотрел для своего нового компьютера разъем (так называемый «слот») для подсоединения дополнительных устройств. Первым понял и оценил перспективы этого компьютера приятель Стива Возняка – Стив Джобс (рис. 25). Он предложил организовать фирму для его серийного изготовления. 1 апреля 1976 года они основали компанию Apple, и в январе 1977 года официально зарегистрировали ее. Новый компьютер они назвали Apple-I (рис. 26). В течение 10 месяцев им удалось собрать и продать около 200 экземпляров Apple-I.


Рис. 25. Стив Возняк и Стив Джобс


Рис. 26. Персональный компьютер Apple-I

В это время Возняк уже работал над его усовершенствованием. Новая версия получила название Apple-II (рис. 23). Компьютер был выполнен в пластмассовом корпусе, получил графический режим, звук, цвет, расширенную память, 8 разъемов расширения (слотов) вместо одного. Для сохранения программ в нем использовался кассетный магнитофон. Основу первой модели Apple II составлял, как и в Apple I, микропроцессор 6502 фирмы MOS Technology с тактовой частотой 1 мегагерц. В постоянной памяти был записан Бейсик. Объем оперативной памяти в 4 Кбайта был расширен до 48 Кбайт. Информация выводилась на цветной или черно-белый телевизор, работающий в стандартной для США системе NTSC. В текстовом режиме отображались 24 строки, по 40 символов в каждой, а в графическом разрешение составляло 280 на 192 точки (шесть цветов). Основное достоинство Apple II заключалось в возможности расширения его оперативной памяти до 48 Кбайт и использования 8 разъемов для подключения дополнительных устройств. Благодаря использованию цветной графики его можно было использовать для самых различных игр (рис. 27).


Рис. 27. Персональный компьютер Apple II

Благодаря своим возможностям Apple II завоевал популярность среди людей самых различных профессий. От его пользователей не требовалось знания электроники и языков программирования.

Apple II стал первым по-настоящиму персональным компьютером для ученых, инженеров, юристов, бизнесменов, домохозяек и школьников.

В июле 1978 года Apple II был дополнен дисководом Disk II, значительно расширившим его возможности. Для него была создана дисковая операционная система Apple-DOS. А в конце 1978 года компьютер снова усовершенствовали и выпустили под именем Apple II Plus. Теперь его можно было использовать в деловой сфере для хранения информации, ведения дел, помощи в принятии решений. Началось создание таких прикладных программ, как текстовые редакторы, органайзеры, электронные таблицы.

В 1979 году Дэн Бриклин и Боб Фрэнкстон создали программу VisiCalc – первую в мире электронную таблицу. Этот инструмент лучше всего подходил для бухгалтерских расчетов. Первая его версия была написана для Apple II, который зачастую покупали только для того, чтобы работать с VisiCalc.

Таким образом, за несколько лет микрокомпьютер, во многом благодаря фирме Apple и ее основателям Стивену Джобсу и Стиву Возняку, превратился в персональный компьютер для людей самых различных профессий.

В 1981 году появился персональный компьютер IBM PC, который вскоре стал стандартом компьютерной индустрии и вытеснил с рынка почти все конкурирующие модели персональных компьютеров. Исключение составил только Apple. В 1984 году был создан Apple Macintosh – первый компьютер с графическим интерфейсом, управляемый мышью. Благодаря его преимуществам фирме Apple удалось удержаться на рынке персональных компьютеров. Она завоевала рынок в области образования и издательского дела, где выдающиеся графические возможности «Макинтошей» используются для верстки и обработки изображений.

Сегодня фирма Apple контролирует 8–10% мирового рынка персональных компьютеров, а остальные 90% – IBM-совместимые персональные компьютеры. Большая часть компьютеров Macintosh находится у пользователей в США.

В 1979 году появился оптический компакт-диск (CD), разработанный фирмы Philips и предназначенный только для прослушивания музыкальных записей.

В 1979 году фирма Intel разработала микропроцессор 8088 для персональных компьютеров.

Широкое распространение получили персональные компьютеры модели IBM PC, созданные в 1981 году группой инженеров фирмы IBM под руководством Уильяма Лоуи (William C. Lowe). Компьютер IBM PC имел процессор Intel 8088 с тактовой частотой 4.77 МHz, 16 Kb памяти с возможностью расширения до 256 Kb, операционную систему DOS 1.0. (рис. 24). Операционная система DOS 1.0 была создана компанией Microsoft. В течение всего одного месяца компания IBM сумела продать 241 683 компьютера IBM PC. По договоренности с руководителями Microsoft компания IBM отчисляла создателям программы определенную сумму за каждую копию операционной системы, устанавливавшуюся на IBM PC. Благодаря популярности персонального компьютера IBM PC руководители Microsoft Билл Гейтс и Пол Аллен вскоре стали миллиардерами, а Microsoft заняла лидирующее положение на рынке программных продуктов.


Рис. 28. Персональный компьютер модели IBM PC

В IBM PC был применен принцип открытой архитектуры, позволивший вносить усовершенствования и дополнения в существующие конструкции ПК. Этот принцип означает применение в конструкции при сборке компьютера готовых блоков и устройств, а также стандартизацию способов соединения компьютерных устройств.

Принцип открытой архитектуры способствовал широкому распространению IBM PC-совместимых микрокомпьютеров-клонов. Их сборкой из готовых блоков и устройств занялось большое число фирм во всем мире. Пользователи, в свою очередь, получили возможность самостоятельно модернизировать свои микрокомпьютеры и оснащать их дополнительными устройствами сотен производителей.

В конце 1990-х годов IBM PC-совместимые компьютеры составили 90% рынка персональных компьютеров.

Персональный компьютер IBM PC вскоре стал стандартом компьютерной индустрии и вытеснил с рынка почти все конкурирующие модели персональных компьютеров. Исключение составил только Apple. В 1984 году был создан Apple Macintosh – первый компьютер с графическим интерфейсом, управляемый мышью. Благодаря его преимуществам фирме Apple удалось удержаться на рынке персональных компьютеров. Она завоевала рынок в области образования, издательского дела, где используются их выдающиеся графические возможности для верстки и обработки изображений.

Сегодня фирма Apple контролирует 8–10% мирового рынка персональных компьютеров, а остальные 90% – IBM-совместимые персональные компьютеры. Большая часть компьютеров Macintosh находится у пользователей США.

За последние десятилетия XX века компьютеры многократно увеличили свое быстродействие и объемы перерабатываемой и запоминаемой информации.

В 1965 году Гордон Мур, один из основателей корпорации Intel, лидирующей в области компьютерных интегральных схем – «чипов», высказал предположение, что число транзисторов в них будет ежегодно удваиваться. В течение последующих 10 лет это предсказание сбылось, и тогда он предположил, что теперь это число будет удваиваться каждые 2 года. И, действительно, число транзисторов в микропроцессорах удваивается за каждые 18 месяцев. Теперь специалисты по компьютерной технике называют эту тенденцию законом Мура.


Рис. 29. Гордон Мур

Похожая закономерность наблюдается и в области разработки и производства устройств оперативной памяти и накопителей информации. Кстати, я не сомневаюсь, что к тому моменту, когда эта книга увидит свет, многие цифровые данные по их емкости и быстродействию успеют устареть.

Не отставало и развитие программного обеспечения, без которого вообще невозможно пользование персональным компьютером, и прежде всего операционных систем, обеспечивающих взаимодействие между пользователем и ПК.

В 1981 году фирма Microsoft разработала операционную cистему MS-DOS для своих персональных компьютеров.

В 1983 году был создан усовершенствованный персональный компьютер IBM PC/XT фирмы IBM.

В 1980-х годах были созданы черно-белые и цветные струйные и лазерные принтеры для распечатки информации на выходе из компьютеров. Они значительно превосходят матричные принтеры по качеству и скорости печати.

В 1983–1993 годах происходило создание глобальной компьютерной сети Internet и электронной почты E–mail, которыми смогли воспользоваться миллионы пользователей во всем мире.

В 1992 году фирма Microsoft выпустила операционную систему Windows-3.1 для IBM PC-совместимых компьютеров. Слово «Windows» в переводе с английского означает «окна». «Оконная» операционная система позволяет работать сразу с несколькими документами. Она представляет собой так называемый «графический интерфейс». Это – система взаимодействия с ПК, при которой пользователь имеет дело с так называемыми «иконками»: картинками, которыми он может управлять с помощью компьютерной мыши. Такой графический интерфейс и система окон был впервые создан в исследовательском центре фирмы Xerox в 1975 году и применен для ПК Apple.

В 1995 году фирма Microsoft выпустила операционную систему Windows-95 для IBM PC-совместимых компьютеров, более совершенную по сравнению с Windows-3.1, в 1998 году – ее модификацию Windows-98, а в 2000 году – Windows-2000, а в 2006 году – Windows ХР. Для них разработан целый ряд прикладных программ: текстовый редактор Word, электронные таблицы Excel, программа для пользования системой Internet и электронной почтой E-mail – Internet Explorer, графический редактор Paint, стандартные прикладные программы (калькулятор, часы, номеронабиратель), дневник Microsoft Schedule, универсальный проигрыватель, фонограф и лазерный проигрыватель.

За последние годы стало возможным объединить на персональном компьютере текст и графику со звуком и движущимися изображениями. Такая технология получила название «мультимедиа». В качестве носителей информации в таких мультимедийных компьютерах используются оптические компакт-диски CD-ROM (Compact Disk Read Only Memory – т.е. память на компакт-диске «только для чтения»). Внешне они не отличаются от звуковых компакт-дисков, используемых в проигрывателях и музыкальных центрах.

Емкость одного CD-ROM достигает 650 Мбайт, по емкости он занимает промежуточное положение между дискетами и винчестером. Для чтения компакт-дисков используется CD-дисковод. Информация на компакт-диск записывается только один раз в промышленных условиях, а на ПК ее можно только читать. На CD-ROM издаются самые различные игры, энциклопедии, художественные альбомы, карты, атласы, словари и справочники. Все они снабжаются удобными поисковыми системами, позволяющими быстро найти нужный материал. Объема памяти двух компакт-дисков CD-ROM хватает для размещения энциклопедии, превышающей по объему Большую Советскую энциклопедию.

В конце 1990-х годов были созданы однократно записываемые CD-R и многократно перезаписываемые CD-RW оптические компакт-диски и дисководы для них, позволяющие пользователю делать любые записи звука и изображения по своему вкусу.

В 1990–2000 годах, в дополнение к настольным персональным компьютерам, были выпущены ПК «ноутбук» в виде портативного чемоданчика и еще более миниатюрные карманные «палмтоп» (наладонники) – как следует из их названия, помещающиеся в кармане и на ладони. Ноутбуки снабжены жидкокристаллическим экраном-дисплеем, размещенным в откидной крышке, а у палмтопов – на передней панели корпуса.

В 1998–2000 годах была создана миниатюрная твердотельная «флэш-память» (без подвижных деталей). Так, память Memory Stick имеет размеры и вес пластинки «жвачки», а память SD фирмы Panasonic – почтовой марки. Между тем объем их памяти, которая может храниться сколь угодно долго, составляет 64–128 Мбайт и даже 2–8 и более Гбайт.

Кроме портативных персональных компьютеров, создаются суперкомпьютеры для решения сложных задач в науке и технике – прогнозов погоды и землетрясений, расчетов ракет и самолетов, ядерных реакций, расшифровки генетического кода человека. В них используются от нескольких до нескольких десятков микропроцессоров, осуществляющих параллельные вычисления. Первый суперкомпьютер разработал Сеймур Крей в 1976 году.

В 2002 году в Японии был построен суперкомпьютер NEC Earth Simulator, выполняющий 35,6 триллионов операций в секунду. На сегодня это самый быстродействующий в мире суперкомпьютер.


Рис. 30. Сеймур Крей


Рис. 31. Суперкомпьютер Cray-1


Рис. 32. Суперкомпьютер Cray-2

В 2005 году компания IBM разработала суперкомпьютер Blue Gene производительностью свыше 30 триллионов операций в секунду. Он содержит 12000 процессоров и обладает в тысячу раз большей мощностью, чем знаменитый Deep Blue, с которым в 1997 году играл в шахматы чемпион мира Гарри Каспаров. Компания IBM и исследователи из Швейцарского политехнического института в Лозанне впервые предприняли попытку моделирования человеческого мозга.

В 2006 году персональным компьютерам исполнилось 25 лет. Посмотрим, как они изменились за эти годы. Первые из них, оборудованные микропроцессором Intel, работали с тактовой частотой всего 4,77 МГц и имели оперативную память 16 Кбайт. Современные ПК, оборудованные микропроцессором Pentium 4, созданном в 2001 году, имеют тактовую частоту 3–4 ГГц, оперативную память 512 Мбайт – 1Гбайт и долговременную память (винчестер) объемом десятки и сотни Гбайт и даже 1 Терабайт. Такого гигантского прогресса не наблюдается ни в одной отрасли техники, кроме цифровой вычислительной. Если бы такой же прогресс был в увеличении скорости самолетов, то они давно бы уже летали со скоростью света.

Миллионы компьютеров используются практически во всех отраслях экономики, промышленности, науки, техники, педагогики, медицины.

Основные причины такого прогресса – в необычайно высоких темпах микроминиатюризации устройств цифровой электроники и успехах программирования, сделавших «общение» рядовых пользователей с персональными компьютерами простым и удобным.


Потребность в приспособлениях, позволяющих ускорить процесс счёта, появилась у человека ещё тысячи лет назад. Тогда для этого использовались простейшие средства, вроде счётных палочек. Позже появился абак, больше известный нам как счёты. Он позволял выполнять только самые простейшие арифметические действия. С тех пор многое изменилось. Практически у каждого дома стоит компьютер, а в кармане лежит смартфон. Всё это можно объединить под общим названием «Компьютерные технологии» или «Вычислительная техника». В этой статье вы узнаете немного больше об истории её развития.

1623 год. Вильгельм Шиккард думает: «А почему бы мне не изобрести первый арифмометр?» И он его изобретает. У него получается механический прибор, способный выполнять основные арифметические действия (сложение, умножение, деление и вычитание) и работающий с помощью зубчатых колёс и цилиндров.

1703 год. Готфрид Вильгельм Лейбниц описывает двоичную систему счисления в своём трактате «Explication de l’Arithmtique Binaire», что на русский язык переводится как «Объяснение Двоичной Арифметики». Реализация использующих её компьютеров гораздо проще, и сам Лейбниц об этом знал. Ещё в 1679 году он создал чертёж двоичной вычислительной машины. Но на практике первое подобное устройство появилось только в середине XX века.

1804 год. Впервые появляются перфорированные карты (перфокарты). Их использование не прекратилось и в 1970-х годах. Они представляют собой листы тонкого картона, в некоторых местах которого имеются отверстия. Информация записывалась различными последовательностями этих отверстий.

1820 год. Чарльз Ксавьер Томас (да, почти как профессор Икс) выпускает арифмометр Томаса, вошедший в историю как первое устройство для счёта, выпускаемое серийно.

1835 год. Чарльз Бэббидж хочет изобрести свою собственную аналитическую машину и описывает её. Изначально задачей прибора должно было стать вычисление логарифмических таблиц с высокой точностью, но позже Бэббидж передумал. Теперь его мечтой стала машина общего назначения. На то время создание подобного аппарата было вполне реально, но работать с Бэббиджем оказалось непросто из-за его характера. В результате разногласий проект был закрыт.

1845 год. Израиль Штаффель создаёт первый в истории прибор, способный извлекать из чисел квадратные корни.

1905 год. Перси Лудгерт издаёт проект программируемого механического компьютера.

1936 год. Конрад Цузе решает создать свою вычислительную машину. Он называет его Z1.

1941 год. Конрад Цузе выпускает Z3 - первый в мире компьютер, управляемый программой. Впоследствии было выпущено ещё несколько десятков аппаратов серии Z.

1961 год. Выпуск ANITA Mark VII - первого в мире полностью электронного калькулятора.

Пара слов о поколениях компьютеров.

1 поколение. Это так называемые ламповые компьютеры. Они работают с помощью электронных ламп. Первое подобное устройство было создано в середине XX века.

2 поколение. Все пользовались компьютерами 1 поколения, пока вдруг в 1947 году Уолтер Браттейн и Джон Бардин не изобрели очень важную вещь - транзистор. Так появилось второе поколения компьютеров. Они потребляли гораздо меньше энергии, а их производительность была больше. Эти устройства были распространены в 50-х-60-х годах XX века, пока в 1958 году не была изобретена интегральная схема.

3 поколение. Работа этих компьютеров была основана на интегральных схемах. Каждая такая схема содержит сотни миллионов транзисторов. Впрочем, создание третьего поколения не остановило выпуск компьютеров второго поколения.

4 поколение. В 1969 году Тэду Хоффу в голову пришла идея заменить множество интегральных схем одним маленьким устройством. Оно было позже названо микросхемой. Благодаря этому стало возможным создавать совсем маленькие микрокомпьютеры. Первое такое устройство было выпущено компанией Intel. А в 80-х годах микропроцессоры и микрокомпьютеры оказались самыми распространёнными. Мы и сейчас пользуемся ими.

Это была краткая история развития компьютерных технологий и вычислительной техники. Надеюсь, мне удалось Вас заинтересовать. До свидания!

Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.

1642 г. - французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.

1673 г. — Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.

Первая половина XIX в. - английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу — это механическое устройство, программы для которого задаются посредством перфокарт - карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).

1941 г. — немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.

1943 г. — в США на одном из предприятий фирмы IBM Говард Эйкен создал компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов. В нем использовалось сочетание электрических сигналов и механических приводов. «Марк-1» имел размеры: 15 * 2-5 м и содержал 750 000 деталей. Машина была способна перемножить два 32-разрядных числа за 4 с.

1943 г. - в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.

1945 г. - к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.

1947 г. - Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC-1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC-1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.

1949 г. - английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.

1951 г. - Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32-32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.

1952 г. - фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.

После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода - вывода.

1952 г. — фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).

1956 г. - фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти - дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.

1956 г. - фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.

1957 г. — группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.

1960-е гг. — 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.

1970-е гг. - 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.

1974 г. - несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера — устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.

1975 г. - появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.

Конец 1975 г. — Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.

Август 1981 г. — компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.

1980-е гг. — 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.

1990-е гг. — 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.

2000-е гг. — 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

Лекция № 10. ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

1.1. НАЧАЛЬНЫЙ ЭТАП РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Потребность в автоматизации обработки данных, в том числе вычислений, возникла очень давно. Считается, что исторически первым и, соответственно, простейшим счетным устройством был абак, который относится к ручным приспособлениям для счета.

Доска разделялась на бороздки. Одна бороздка соответствовала единицам, другая – десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующем разряде. В странах Дальнего Востока был распространён китайский аналог абака – суан-пан (в основе счета лежала не десятка, а пятерка), в России – счёты .

Абак

Суан-пан. Положено 1930

Счеты. Положено 401,28

Первой дошедшей до нас попыткой решить задачу по созданию машины умеющей складывать многоразрядные целые числа был эскиз 13-разрядного суммирующего устройства разработанный Леонардо да Винчи около 1500 г.

В 1642 году Блез Паскаль изобрел устройство, механически выполняющее сложение чисел. Ознакомившись с трудами Паскаля и изучив его арифметическую машину, Готфрид Вильгельм Лейбниц внес в нее значительные усовершенствования, и в 1673 году сконструировал арифмометр, позволяющий механически выполнять четыре арифметических операции. Начиная с 19 века, арифмометры получили очень широкое распространение и применение. На них выполняли даже очень сложные расчеты, например, расчеты баллистических таблиц для артиллерийских стрельб. Существовала специальная профессия- счетчик.

Несмотря на явный прогресс по сравнению с абаком и подобными ему приспособлениями для ручного счета, данные механические вычислительные устройства требовали постоянного участия человека в процессе вычислений. Человек, производя вычисления на таком устройстве, сам управляет его работой, определяет последовательность выполняемых операций.

Мечтой изобретателей вычислительной техники было создание считающего автомата, который бы без вмешательства человека производил расчеты по заранее составленной программе.

В первой половине 19 века английский математик Чарльз Бэббидж попытался создать универсальное вычислительное устройство – Аналитическую машину , которая должна была выполнять арифметические операции без участия человека. В Аналитическую машину были заложены принципы, ставшие фундаментальными для вычислительной техники, и были предусмотрены все основные компоненты, имеющиеся в современном компьютере. Аналитическая машина Бэббиджа должна была состоять из следующих частей:

1. «Фабрика» – устройство, в котором производиться все операции по обработке всех видов данных (АЛУ).

2. «Контора» – устройство, обеспечивающие организацию выполнения программы обработки данных и согласованную работу всех узлов машины в ходе этого процесса (УУ).

3. «Склад» – устройство, предназначенное для хранения исходных данных, промежуточных величин и результатов обработки данных (ЗУ, или просто память).

4. Устройства, способные преобразовывать данные в форму, доступную компьютеру (кодирование). Устройства ввода.

5. Устройства, способные преобразовывать результаты обработки данных в форму, понятную человеку. Устройства вывода.

В окончательном варианте машины у нее было три устройства ввода с перфокарт, с которых считывались программа и данные, подлежащие обработке.

Бэббидж не смог довести работу до конца - это оказалось слишком сложно на основе механической техники того времени. Однако он разработал основные идеи, и в 1943 году американец Говард Эйкен на основе уже техники 20 века – электромеханических реле – смог построить на одном из предприятий фирмы IBM такую машину под названием «Марк-1». Для представления чисел в ней были использованы механические элементы (счетные колеса), для управления – электромеханические.

1.2. НАЧАЛО СОВРЕМЕННОЙ ИСТОРИИ ЭЛЕКТРОННОЙ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Подлинная революция в вычислительной технике произошла в связи с применением электронных устройств. Работа над ними началась в конце 30-х годов одновременно в США, Германии, Великобритании и СССР. К этому времени электронные лампы, ставшие технической основой устройств обработки и хранения цифровой информации, уже широчайшим образом применялись в радиотехнических устройствах.

Огромный вклад в теорию и практику создания электронной вычислительной техники на начальном этапе ее развития внес один из крупнейших американских математиков Джон фон Нейман. В историю науки навсегда вошли «принципы фон Неймана». Совокупность этих принципов породила классическую (фон-неймановскую) архитектуру ЭВМ. Один из важнейших принципов - принцип хранимой программы - требует, чтобы программа закладывалась в память машины так же, как в нее закладывается исходная информация. Первая ЭВМ с хранимой программой (EDSAC ) была построена в Великобритании в 1949 г.

В нашей стране вплоть до 70-х годов создание ЭВМ велось почти полностью самостоятельно и независимо от внешнего мира (да и сам этот «мир» был почти полностью зависим от США). Дело в том, что электронная вычислительная техника с самого момента своего первоначального создания рассматривалась как сверхсекретный стратегический продукт, и СССР приходилось разрабатывать и производить ее самостоятельно. Постепенно режим секретности смягчался, но и в конце 80-х годов наша страна могла покупать за рубежом лишь устаревшие модели ЭВМ (а самые современные и мощные компьютеры ведущие производители - США и Япония - и сегодня разрабатывают и производят в режиме секретности).

Первая отечественная ЭВМ - МЭСМ («малая электронно-счетная машина») -была создана в 1951 г. под руководством Сергея Александровича Лебедева, крупнейшего советского конструктора вычислительной техники. Рекордной среди них и одной из лучших в мире для своею времени была БЭСМ-6 («большая электронно-счетная машина, 6-я модель»), созданная в середине 60-х годов и долгое время бывшая базовой машиной в обороне, космических исследованиях, научно-технических исследованиях в СССР. Кроме машин серии БЭСМ выпускались и ЭВМ других серий - «Минск», «Урал», М-20, «Мир» и другие.

С началом серийного выпуска ЭВМ начали условно делить по поколениям; соответствующая классификация изложена ниже.

1.3. ПОКОЛЕНИЯ ЭВМ

В истории вычислительной техники существует своеобразная периодизация ЭВМ по поколениям. В ее основу первоначально был положен физико-технологический принцип: машину относят к тому или иному поколению в зависимости от используемых в ней физических элементов или технологии их изготовления. Границы поколений во времени размыты, так как в одно и то же время выпускались машины совершенно разного уровня. Когда приводят даты, относящиеся к поколениям, то скорее всего имеют в виду период промышленного производства; проектирование велось существенно раньше, а встретить в эксплуатации весьма экзотические устройства можно и сегодня.

В настоящее время физико-технологический принцип не является единственным при определении принадлежности той или иной ЭВМ к поколению. Следует считаться и с уровнем программного обеспечения, с быстродействием, другими факторами, основные из которых сведены в прилагаемую табл. 4.1.

Следует понимать, что разделение ЭВМ по поколениям весьма относительно. Первые ЭВМ, выпускавшиеся до начала 50-х годов, были «штучными» изделиями, на которых отрабатывались основные принципы; нет особых оснований относить их к какому-либо поколению. Нет единодушия и при определении признаков пятого поколения. В середине 80-х годов считалось, что основной признак этого (будущего) поколения - полновесная реализация принципов искусственного интеллекта . Эта задача оказалась значительно сложнее, чем виделось в то время, и ряд специалистов снижают планку требований к этому этапу (и даже утверждают, что он уже состоялся). В истории науки есть аналоги этого явления: так, после успешного запуска первых атомных электростанций в середине 50-х годов ученые объявили, что запуск многократно более мощных, дающих дешевую энергию, экологически безопасных термоядерных станций, вот-вот произойдет; однако, они недооценили гигантские трудности на этом пути,так как термоядерных электростанций нет и по сей день.

В то же время среди машин четвертого поколения разница чрезвычайно велика, и поэтому в табл. 4.1 соответствующая колонка разделена на на две: А и Б. Указанные в верхней строчке даты соответствуют первым годам выпуска ЭВМ. Многие понятия, отраженные в таблице, будут обсуждаться в последующих разделах учебника; здесь ограничимся кратким комментарием.

Чем младше поколение, тем отчетливее классификационные признаки. ЭВМ первого, второго и третьего поколений сегодня - в лучшем случае музейные экспонаты.

Какие компьютеры относятся в первому поколению?

К первому поколению обычно относят машины, созданные на рубеже 50-х годов. В их схемах использовались электронные лампы . Эти компьютеры были огромными, неудобными и слишком дорогими машинами , которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла.

Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

Быстродействие порядка 10-20 тысяч операций в секунду.

Но это только техническая сторона. Очень важна и другая - способы использования компьютеров, стиль программирования, особенности математического обеспечения.

Программы для этих машин писались на языке конкретной машины . Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

Отечественные машины первого поколения: МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.

Какие компьютеры относятся ко второму поколению?

Второе поколение компьютерной техники - машины, сконструированные примерно в 1955-65 гг. Характеризуются использованием в них как электронных ламп , так и дискретных транзисторных логических элементов . Их оперативная память была построена на магнитных сердечниках. В это время стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски .

Быстродействие - до сотен тысяч операций в секунду, ёмкость памяти - до нескольких десятков тысяч слов.

Появились так называемые языки высокого уровня , средства которых допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде .

Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами , переводят программу с языка высокого уровня на машинный язык.

Появился широкий набор библиотечных программ для решения разнообразных математических задач. Появились мониторные системы , управляющие режимом трансляции и исполнения программ. Из мониторных систем в дальнейшем выросли современные операционные системы.

Таким образом, операционная система является программным расширением устройства управления компьютера .

Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

Машинам второго поколения была свойственна программная несовместимость , которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

В чем особенности компьютеров третьего поколения?

Машины третьего поколения созданы примерно после 60-x годов. Поскольку процесс создания компьютерной техники шел непрерывно, и в нём участвовало множество людей из разных стран, имеющих дело с решением различных проблем, трудно и бесполезно пытаться установить, когда "поколение" начиналось и заканчивалось. Возможно, наиболее важным критерием различия машин второго и третьего поколений является критерий, основанный на понятии архитектуры.

Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения - семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др.

Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

Что характерно для машин четвёртого поколения?

Четвёртое поколение - это теперешнее поколение компьютерной техники, разработанное после 1970 года.

Наиболее важный в концептуальном отношении критерий, по которому эти компьютеры можно отделить от машин третьего поколения, состоит в том, что машины четвёртого поколения проектировались в расчете на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.

В аппаратурном отношении для них характерно широкое использование интегральных схем в качестве элементной базы, а также наличие быстродействующих запоминающих устройств с произвольной выборкой ёмкостью в десятки мегабайт.

C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Быстродействие составляет до нескольких десятков миллионов операций в секунду, ёмкость оперативной памяти порядка 1 - 64 Мбайт.

Для них характерны:

  • применение персональных компьютеров;
  • телекоммуникационная обработка данных;
  • компьютерные сети;
  • широкое применение систем управления базами данных;
  • элементы интеллектуального поведения систем обработки данных и устройств.

Какими должны быть компьютеры пятого поколения?

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции , использования оптоэлектронных принципов (лазеры , голография ).

Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

В компьютерах пятого поколения произойдёт качественный переход от обработки данных к обработке знаний .

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них - это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс" . Его задача - понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

Поколения ЭВМ

Показатель

Поколения ЭВМ

Первое

1951-1954

Второе

1958-I960

Третье

1965-1966

Четвертое

Пятое

1976-1979

1985-?

Элементная база процессора

Электронные

лампы

Транзисторы

Интграль-ные схемы

(ИС)

Большие ИС (БИС)

СвербольшиеИС

(СБИС)

Оптоэлек-троника

Криоэлек-троника

Элементная база ОЗУ

Электронно-лучевые трубки

Феррито-вые сердечники

Ферритовые

сердечники

БИС

СБИС

СБИС

Максмальная емкость ОЗУ, байт

10 2

10 1

10 4

10 5

10 7

10 8 (?)

Максимальное быстродействие процессора (оп/с)

10 4

10 6

10 7

10 8

10 9

Многопро-цессорность

10 12 ,

Многопро-цессорность

Языки программирования

Машинный код

Ассемблер

Процедурные языки высокого уровня (ЯВУ)

Новые

процедурные ЯВУ

Непроце-дурные ЯВУ

Новые непрцедур-ные ЯВУ

Средства связи пользователя с ЭВМ

Пульт управления и перфокарты

Перфокарты и перфоленты

Алфавитно- цифровой терминал

Монохром- ный графиче- ский дисплей, клавиатура

Цветной + графический дисплей, клавиатура, «мышь» и др.